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The theory of the transient hot-wire technique for thermal conductivity 
measurements is reassessed in the special context of thermal diffusivity 
measurements. A careful examination of the working equation and an error 
analysis are employed to identify the principal sources of error. Notwithstanding 
earlier claims to the contrary, the best precision that can be attained in thermal 
diffusivity measurements is of the order of +3%, while the accuracy is 
inevitably poorer. Experimental evidence is adduced from two different 
instruments that supports the analysis given here. Although the technique can- 
not yield values of the thermal diffusivity, K, as accurate as can be achieved by 
the use of the best possible individual values of 2, p, and Cp in the relation 
K = ~/pCp, the simplicity of the technique makes it attractive for many purposes. 
It is even possible to derive values of the isobaric heat capacity Cp for many 
fluids not available from other methods. 

KEY WORDS: argon; thermal conductivity; thermal diffusivity; toluene; 
transient hot-wire technique; m-xylene. 

1. I N T R O D U C T I O N  

T h e  t r ans i en t  h o t - w i r e  t e c h n i q u e  for  t h e r m a l  c o n d u c t i v i t y  m e a s u r e m e n t s  

has  n o w  b e c o m e  es tab l i shed  as the  p r i m a r y  m e t h o d  for a c c u r a t e  de te r -  

m i n a t i o n s  o v e r  a wide  va r i e ty  of  t h e r m o d y n a m i c  s tates  [ 1 - 3 ] .  Since the  

ve ry  first a p p l i c a t i o n  o f  the  t e c h n i q u e  [ 4 ]  it has  been  r e c o g n i z e d  tha t  it is 

poss ible ,  in pr inc ip le ,  to o b t a i n  b o t h  the  t h e r m a l  c o n d u c t i v i t y  a n d  the  ther-  
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mal diffusivity from the same experiment. In the last few years there have 
been a number of independent rediscoveries of the fact represented in 
several publications [5-9]. The accuracy claimed for the corresponding 
thermal diffusivity measurements has varied between +1% [7] and 
_+ 11% [9] and has not always been in direct proportion to the precision 
of the measurement of the primary experimental variables. In other cases 
only an estimate of the precision of the measurements, based upon 
reproducibility, has been made [5]. 

Only in a few cases [7, 8] has any attempt been made to modify 
existing thermal conductivity instruments to perform thermal diffusivity 
studies. Given that the instruments were therefore not optimized for the 
latter mode of operation, it is not surprising that the claimed precision has 
never approached that of the best thermal conductivity measurements 
(+0.3%). 

It is the purpose of this paper to present a complete analysis of the 
application of the transient hot-wire technique to thermal diffusivity 
measurements. The treatment is intended to provide not only the full 
working equations but also a reliable means of assessing experimental errors 
and a guide to the optimum design for thermal diffusivity measurements. 

2. T H E O R Y  O F  T H E  M E T H O D  

For a constant infinite line source of heat, with power input per unit 
length q, initiated at time t - -0  and immersed in a fluid of constant fluid 
properties and infinite extent, the temperature of the fluid at a radial 
position r from the heat source conforms to the equation 

ATid(r, t )=  T(r, t)- T o = Z E  1 ~-~ (1) 

where T o is the initial, uniform temperature of the fluid, Z the thermal 
conductivity of the fluid, and 

~c = (2) 

its thermal diffusivity in which p is the density and Cp the isobaric heat 
capacity. E1 is the exponential integral. 

For large values of •t/r 2, the exponential integral in Eq. (1) can be 
expanded to yield 

AT,d(r,t)=Zlne•t ( r2 ) 

where C = 1.781... is the exponential of Euler's constant. 
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If the wire radius is chosen such that the second term on the right- 
hand side of Eq. (3) is less than 0.01% of AT~d, it becomes clear that in this 
ideal arrangement the thermal conductivity can be deduced from the slope 
of the straight line A T~d vs In t, while the thermal diffusivity may be 
obtained from its intercept or, more correctly, the absolute value of A Tid at 
a fixed time. 

In any practical instrument, the source of heating is provided by a 
finite length of metallic wire which also serves as a resistance thermometer. 
As a consequence, the measured temperature rise of the wire, A Tw, departs 
from the ideal of Eq. (3) even at the surface of the wire where r = a. Most 
of the possible causes of departure of the measured temperature rise from 
the ideal value have been investigated by Healy et al. [10]. Their results 
were expressed in the form of small corrections, 6Ti, to be applied to the 
measured temperature rise, zITw, so that 

AT~d=ATw+ ~ c~T, (4) 
i 

The temperature, Tr, to which the measured thermal conductivity is 
referred, must also be corrected by a set of values, 6T*, so that 

rr:ro+Y  r,* (5) 
i 

Healy et al. [ 10] were concerned solel~r with the deduction of approximate, 
additive corrections to be applied to the measurement of the thermal con- 
ductivity of the fluid determined from the slope of the line ATid vs In t. 
Consequently, they presumed all corrections to be small and considered in 
detail only those effects that were time dependent. Because time-indepen- 
dent effects may also contribute systematically to the error in the deter- 
mination of the thermal diffusivity, it is necessary to consider some of t h e  
corrections here afresh. 

2.1. Corrections to the Temperature Rise 

We illustrate the magnitude of the corrections with examples from gas 
and liquid phases using two instruments: the low-temperature, general- 
purpose instrument described by Roder [ l 1 ] and the high-pressure, liquid- 
phase apparatus first described by Menashe and Wakeham [3]. In the 
former instrument, the diameter of the sensing wire is 12.5 #m, while in the 
latter it is 7 #m. For the gas phase, we select conditions for an experiment 
on argon with 
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To = 200.63 K 

Po = 3.548 MPa 

2 =0.01438 W . m - l . K  1 

p=92.86 k g . m - 3  

Cp = 664.7 J . k g - 1  .K 1 

whereas for the liquid phase we select conditions appropriate to a 
measurement on m-xylene 1-12] with 

To = 305.6 K 

Po = 3.4 MPa 

)o=0.129 W . m - l . K  1 

p = 8 5 5 k g - m  3 

C p = 1 7 2 0 J - k g  1 .K-1  

We next consider each of the corrections to the ideal model and sub- 
sequently examine the magnitude of the significant corrections for each of 
the two instruments. Wherever possible, we adhere to the notation 
introduced by Healy et al. [10]. 

As a result of the expansion of the exponential integral employed in 
the derivation of Eq. (1), there is a truncation error given by 

~ T9 = a2/[ 4~ct ln( 4~t/ a2C) ] (6) 
ATia 

which decreases with increasing time. Even in the worst case for the two 
instruments mentioned above, the correction 6T 9 does not exceed 0.01% of 
A Tid and is therefore negligible. For the liquid phase, effects due to radial 
convection and viscous dissipation [11, 13] are also negligible. 

However, in gas-phase measurements, we find minor contributions due 
to radial convection and viscous dissipation. The analysis by Healy et al. 
[10] has shown that convection and compression effects were always 
negligible in the evaluation of the thermal conductivity, compared with 
density-induced variations of the thermal diffusivity. Their analysis was 
extended to the dense gas and liquid states [-13, 14] for the case when the 
variation in density, Ap, during a measurement was much smaller than 
the density, Po. The result obtained was 

6T 4= -- ~ ~p In 4-t- 2Cp J (7) 
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where c~p is the thermal expansion coefficient of the fluid at constant 
pressure, g the acceleration of gravity, and Pr = tlCp/2 the Prandtl number. 
The correction, 3T4, is approximately constant with time; it is about 0.4% 
of the ideal temperature rise at low densities. Therefore, this correction has 
to be considered in the thermal diffusivity determination. It is assumed in 
this paper that vertical convection in any fluid phase is avoided by a careful 
choice of the time scale of measurement [1, 11, 15.] 

A number of other corrections are not negligible. First we consider the 
fact that the sensing wire has a nonzero radius a, a heat capacity (Cp)w, 
and a finite thermal conductivity 2w. As a result, a correction 3T1, which 
decreases with increasing time, must be applied to the measured wire 
temperature rise [10]. 

q ~a2[(pCp)w-pCp]lnam a 2 a 2 2 } 
6T~ = ~ - ~  ~ 22t a2~ 4m § 4Xwt 2~ w (8) 

where Xw is the thermal diffusivity of the wire material, and the subscript w 
means wire properties. Whereas for thermal conductivity measurements 
only the time-dependent corrections need be considered, for the thermal 
diffusivity all are important, although small, and the full correction in 
Eq. (8) must be employed. 

Because the test fluid must be contained within a vessel with an 
isothermal, finite outer boundary (of radius b) in place of the infinite fluid 
considered in the ideal model, a further correction is necessary. The correc- 
tion, which increases with increasing time, is 

6T2=~-~ 2 l n \ b ~ j +  ~ e g~'/b2[~zYo(g~)]z (9) 
v = l  

where the g~. are the roots of Jo(g~) = 0, and J0 and Yo are Bessel functions. 
In the special case of a dilute gas, it is necessary to consider that the 

mean free path of the gas molecules may approach the diameter of the 
sensing wire. In such cases, there may be a temperature discontinuity at the 
wire surface which leads to a further correction to the measured wire 
temperature. An approximate evaluation of this effect shows that the 
correction is [10] 

qA A Tid ~r,___ (lO) 
2n2a T O 

where A is the mean free path of the gas. The approximation used to 
evaluate 3T 6 is not sufficiently reliable to allow application of the correc- 
tion when it is significant. Consequently, it is preferable to avoid 
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measurements within a density range where the effect is significant, as out- 
lined by de Groot et al. [15]. 

A group of effects arises from the fact that the ph.ysical properties of 
the fluid are, in practice, functions of temperature and not constants as 
supposed in the ideal model. 

First we consider the direct effect of their dependence on temperature. 
When it is accounted for, by means of a linear perturbation 4 to the proper- 
ties about the equilibrium temperature, both a time-dependent correction 
and a time-independent contribution emerge. The time-dependent con- 
tribution is most easily accounted for by referring the thermal conductivity 
determined from the slope of the ATvs In t line to a reference state (Tr, Pr)" 
The appropriate correction to the bath temperature in Eq. (5) is usually 

�9 1 
6T, =~ (AT(ti) + AT(tf)) (11) 

where ti and tf are the initial and final times of measurement. The 
corresponding reference density is Pr(Tr, Po), where P0 is the equilibrium 
pressure. In cases where the distribution of measured points in In t is not 
uniform, a rather more complicated formula is necessary [16]. 

The time-independent part of the correction is best applied to the 
measured temperature rise itself and can be written 

[ q l  2 
3T7 = - 4~2]-To) (Z - ~b)In 4 (12) 

where Z and ~b are the linear coefficients in the temperature expansions of 2 
and pCp for the fluid 

)~(T, p) = ).o(1 + Z AT) (13) 

and 

pCr,(p, T) = (pCr,)o (1 + ~b AT) (14) 

This method of application ensures that the thermal diffusivity determined 
refers to the initial, equilibrium state (To, Po) and the initial pressure. 

A further effect arising from the variation of the fluid physical proper- 
ties is compression work. An approximate analysis of this effect has been 

4 In regions of state where the properties are exceptionally strong functions of temperature, 
such as near the critical point, more complicated functional dependences may be necessary, 
leading to correction term 3T8 presented elsewhere [14]. 
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given by Healy et al. [10]. It leads to the result that the correction to be 
applied to the measured temperature rise is 5 

= [ qLRt  e_b2/4~rt) 

where L is the length of the heated wire, V the volume of the vessel con- 
taining the test fluid, Cv the isocoric heat capacity, and R the gas constant. 

The calculation of this correction is not sufficiently accurate to allow 
its application to measurements directly. Instead, it is preferable to avoid 
the range of conditions in which the correction, judged by Eq. (15), is 
significant. This can be achieved by operating above a prescribed density 
limit or by making the volume of the test vessel sufficiently large. As shown 
later for the gaseous phase, its effect at the beginning of the experiment is 
negligible and does not affect the evaluation of the thermal diffusivity. 

In any event the magnitude of the correction can be tested by 
increasing the volume, V, experimentally and observing any consequent 
changes in the temperature rise. It is therefore assumed in what follows that 
the precautions to render ~ T  3 negligible have been taken. For typical 
experiments in gaseous argon we are limited to densities above 
1 mol.  liter - 1 (40 kg. m-B). 

An entirely different type of correction arises from the fact that any 
conductive heat transfer must be accompanied by  a simultaneous radiative 
transfer. In this case the correctiQn depends upon whether or not the fluid 
absorbs radiation. If the fluid is transparent to radiation in the wavelength 
range of significance, then the treatment of the effect is straightforward and 
the correction is 

gT 5 = 8naaT 3 AT~/q (16) 

in which a is the Stefan-Boltzmann constant. This correction is invariably 
small. 

If the fluid absorbs radiation, then a completely different analysis, 
carried out by Menashe and Wakeham [17] and, subsequently, by Nieto 
de Castro et al. [18], is necessary. The correction in this case is [18] 

4~2qB{ a2 / 4tct\ a2 \ a - ~ l  ~ 6 T 5 -  ~--- In {---~1 +-z- - t (17) 

in which 

B -  16KnZaT~ (18) 
pCp 

5 The final algebraic result in Ref. 10 is in error, although the numerical difference from the 
present result is small. 
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where K is a mean extinction coefficient for the radiation and n is the 
refractive index of the fluid. The difficulty with this correction arises 
because it is experimentally impossible to alter its magnitude and no useful 
measurements of K exist. However, in the case of every fluid studied thus 
far, Ba2/4tc has been shown experimentally to be less than 10 5 [18], 
which implies that the radiation correction is again negligible. However, 
because B is proportional to T03, it is quite possible that operation at high 
temperatures may require application of a significant correction in order to 
eliminate the effect from both the thermal conductivity and the thermal 
diffusivity [18]. 

Two final effects that should be considered arise because it is necessary 
to Use a finite wire in an experiment in place of the infinite wire of the 
theory and because the heat dissipation in the wire must be a constant to 
within 0.05% during an experiment. These effects are generally compen- 
sated by experimental means. Consequently, we consider the former later, 
in the context of experimental errors, as distinct from corrections to the 
working equation. 

2.2. The Magnitude of the Corrections 

Among the various corrections listed in the preceding section there are 
a number that are sufficiently large that they must be applied in the deter- 
mination of the thermal conductivity and thermal diffusivity. However, 
because many of them are time dependent, it is important to examine them 
quantitatively in order to optimize the experiment. 

Apart from the corrections discussed below, it is assumed that suf- 
ficient precautions have been taken to render all of the remaining correc- 
tions negligible so far as the thermal diffusivity is concerned. In this 
context, we define negligible to be less than 0.01% of the temperature rise, 
for reasons discussed later. 

Figure 1 contains the time dependence of each of the significant 
corrections of which account must be taken in the determination of the 
thermal diffusivity in the liquid-phase measurement on m-xylene discussed 
earlier. We note that the truncation error, 6T9, decreases with increasing 
time, while the outer boundary correction, 6T2, increases and the effect of 
variable fluid properties, 6T7, is constant. The finite-wire properties correc- 
tion, 3T1, initially falls rapidly with increasing time to zero at 300 ms. It 
subsequently changes sign and, because of the term (2/22w) in Eq. (8), 
asymptotically approaches a small, constant, negative value. At very short 
times, the correction 6T1 is so large that it contributes significantly to the 
absolute temperature rise. Consequently, in contrast to the suggestions of 
earlier workers [7, 8], it is not best to use the measured temperature rise at 



Thermal Diffusivity by the Transient Hot-Wire Technique 301 

I - - -  
0 o  

r  

o 

U 

lo \ ..... X 
�9 \ 

\ 
10a 

L, 
L, 

\ 
\ .  

\ ,  

i i i 1 , 1  r , i i , ,  7 , 
/ 

/ 

/ 
l 

10 5 . . . . . . . . . .  , , , , ,  , I . . . . . . .  

l o  .3 ' . . . . . .  i 'o -2 . . . . . . .  i~-, ' i 'o  o ~o' 
T i m e ,  s 

Fig. 1. Time dependence of some of the corrections for the transient 
hot-wire technique for typical liquid state measurements. ( - - )  3T1, 
finite-wire properties; ( . . . .  ) 3T2, outer boundary; (----)  ~T7, variable 
fluid properties; ( . . . . . .  ) c~Tg, truncation error. 

short times because the evaluation of the corrections can never be better 
than an estimate. Conversely, at very long times ( ~  1 s), the outer boun- 
dary correction becomes the largest time-dependent correction, although it 
is still very small. The correction, ~T7, is always very small. On this basis, 
it must be concluded that for these systems the most accurate 
measurements of the thermal diffusivity measurement would be obtained 
by the use of the temperature rise measurements around t = 1 s. 

Figure 2 contains similar information for the gas-phase measurement. 
The outer boundary correction, 6Tz, the temperature jump correction, 
67"6, and the truncation error correction, 6T9, are nearly zero to within 
0.004% of AT. The finite-wire properties correction 6TI is most important 
at short times, decreasing as time increases. For t ~<0.15 s, 6T 1 >~2.3% of 
AT, confirming the result already found for the liquid phase, namely, that 
the temperature rise at short times should not be used for the measurement 
of thermal diffusivity. The compression work correction, 6T3, varies with 
time and it is significant at the lower densities, accounting for about 0.4% 
of A T at t = 1 s. However, its effect on the determination of the intercept of 
the line is negligible. The radiation correction, 6T5, is slightly dependent on 
time, increasing to about 0.4% of zIT at -~1 s. The effect of both the 
viscous dissipation correction, 674, and the variable fluid properties, 6T7, 
is constant and small. 
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Fig. 2. Time dependence of the corrections for the transient hot-wire 
technique for typical moderately dense gas measurements. Corrections 
identified according to text. SUM is the summation of all corrections. 
6T8 identifies an additional variable fluid properties correction when 
critical effects are observed [14]. 

0.04 
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Figure 2 also displays the sum of all corrections, that is, the overall 
temperature rise correction to the experimental data. It can be seen that the 
sum is almost identical to 6T1; the other corrections almost cancel each 
other. As in the case of liquid measurements, we conclude from Fig. 2 that 
measurements of the thermal diffusivity in the gas phase should be 
evaluated at times around 1 s, where the Y.i 6Ti-~ 0.3% of AT for the best 
accuracy, rather than at short times as suggested by other authors [7, 8]. 

The corrections which must be applied to 3 Tw in order to obtain A Tid 
cannot be known exactly. Consequently, the error in the correction 
contributes an additional uncertainty to A Tid. We denote this added 
uncertainty by ~$Ts/AT. It is, in principle, calculable from estimates of the 
uncertainty in calculating the various corrections. However, as we have 
seen by using the temperature rise at around 1 s, the sum of the corrections 
can be reduced to less than 0.3% of the temperature rise. In this case it is 
quite reasonable to assign a value of 6Ts/AT= 0.01% as an upper limit. 

3. ERROR ANALYSIS 

3.1. Primary Measured Variables 

In the previous section we considered sources of systematic error in 
the measurement of the thermal diffusivity arising from the theory of the 
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experimental method. In this section we consider sources of error arising 
from the measurements themselves that may be either random or 
systematic. The former contribute to the precision of the measurements, 
whereas the latter contribute to the accuracy. 

Figure 3 shows a schematic diagram of the bridge circuit employed to 
determine the temperature rise of the sensing wire as a function of time. 
The bridge is employed to determine the resistance difference between two 
wires, RL and Rs, one longer than the other, at various instants of time 
after the transient heating is initiated. By this mechanism, the effects of the 
ends of the wires are eliminated entirely in a carefully designed instrument 
[-10, 19]. If we denote the resistance difference at time t by 

Rw(t) = RL(t) -- Rs(t) 

where L and S denote the long and short wire, then the measured value 
can be used to obtain a temperature rise by means of the equation [19] 

R w ( t ) -  Rw(0) 
ATw = (19) 

~Rw(0) 

Here, c~ is a pseudolinear temperature coefficient of resistance of the sensing 
wire material. In addition, Rw(0) is lim,~oRw(t). In practice, it is 
exceedingly difficult to measure Rw(0) and it is usually replaced by Rw0, 
the resistance of the wire at the equilibrium temperature of the experiment, 
To, determined in an independe;nt measurement. In principle, the two 
values should be identical, but because Rw0 is determined in a separate 

If: 
t o  logic 

U 
R3 

FI4 R~ 

tl  
le BZT DATA 

l 
V 0 

Fig. 3. A schematic measurement bridge for the 
transient hot-wire technique. 
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experiment [3, 11] using the same bridge, this is not necessarily true. 
Nilsson et al. [-8] have made an attempt to determine Rw(0) itself to avoid 
this difficulty. 

An error analysis of Eq. (19) shows that 

~Rw(0) 6ATw = 6-[Rw(t)-Rw(O)] + + (20) 
R [Rw(t)- Rw(0)] Rw(0) 

or if we use Rw0 in place of Rw(0), we find 

ATw = 8[Rw(t)--  Rwo] 6Rwo 

R Rw(t)- RWo + [-Rw(t)- Rwo] 

6Rwo + (21) + 

where 6Rwo represents the error in Rw0 and incorporates its difference from 
Rw(0). 

If we consider first just the time dependence of A Tw which is 
employed to determine the thermal conductivity, we see from Eq. (19) that 
the only contributions arise from the first, third, and fourth terms in 
Eq. (21). This is because an error in Rw0 is important only in the 
denominator of Eq. (19), and not in the numerator. Furthermore, as long 
as 8Rw0 is small in comparison with Rw0, the effect is small. On the other 
hand, for the thermal diffusivity it is not only the time dependence of A Tw 
that is of concern but also its absolute value. Thus the error in Rw0 makes 
a direct contribution in [he numerator of Eq. (19), expressed in the 
second term in Eq.(21). Here the contribution is of the order 
$Rwo/[Rw(t) - Rw0], which can be quite large because Rw(t) - Rw0 ~ Rw0 
in all experiments. 

It should be emphasized that Eq. (21) refers to the random errors in 
the resistance measurements. Evidently any systematic error in the 
measurement of Rw(t), Rw(0), or Rw0, owing to unaccounted contact 
resistances, will cancel in the numerator of Eq. (19) although they will 
remain in the denominator, where they have a small significance. For this 
reason, it is essential that no contacts in the bridge are altered between the 
measurement of Rw0 and that of Rw(t ). 

The remaining prime variable determined in a transient hot-wire 
measurement is the time. It is a straightforward matter to eliminate 
imprecision in the time base and systematic delays by careful electronic 
design. Consequently, we need be concerned only with the imprecision 
related to assigning a specific time to a specific measurement of the tem- 
perature rise. Whereas the actual value of the error varies among different 
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instruments, it is always handled in the same way. That is, the error in time 
is projected into an additional error in the temperature rise by means of a 
least-squares fitting procedure applied to sets of d Tid(ti) data in which the 
ti are assumed exact. If we denote the additional error in the temperature 
rise measurements resulting from the timing by (6ATw/ATw),, then we 
have, finally, for the total error in the temperature rise measurements, 
6d Tw/d rw 

6A T w 6A Tw (SA Tw 
~- ATw , +  --d~w , 

(22) 

3.2 The Thermal Diffusivity 

In order to obtain the fundamental working equation for the thermal 
diffusivity, Eq. (3) is solved for 

a2C 
~c =- '~7 exp[4~2(Tr, Pr) dTia(t')/q] (23) 

where t' is the specific time at which A Tid is evaluated. In order to obtain 
from the regression line of d T as a function of In t, it can be demonstrated 
that when t ' =  1 s, ~Co can be given by [14] 

a2C 
= exp(I/S) (24) 

~c~ 4 x l s  

where I is the intercept of the regression line, S =  q/4~2(Tr, Pr) is its slope, 
and ~c o refers to the thermal diffusivity at zero-time conditions (bath 
temperature), that is, 

with 

~Co = ~c( To, Po) = ;~( To, Po)/Po( G )o 

po=P(Po, To) (25) 

It is straightforward to carry out the error analysis to yield 6~o/~C o and 
the result is 

~Co \a2C/  a T(t') + In ka2C,] (26) 

The prescribed time, t', from the foregoing discussion, should be 
chosen to be around 1 s, to minimize errors. 
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Collecting together all of the preceding results we find 

6Xo~ 2 ~ +lnf4~Co)f 6T~ [ a[Rw(t)-Rwo] 6ATw ] 
Ko = \agcJ[ -~w + L] R----~--R---~0 + ~ ,J 

6Rw0 6Rw o 
+ -~ + - ~  + Rw0 + [Rw(t)_Rwo ] } (27) 

We may now apply this error estimate to the two measurements con- 
sidered earlier in the liquid and gaseous phases. 

In the liquid-phase instrument a = 3.5/~m and the determination of the 
radius of the wire by electron microscopy leads to 6a/a ~-0.02. For the 
same instrument the statistical estimate of 6S/S from the linear regression 
of a set of AT(lnt) points leads to 6S/S~-2x 10 -4. Furthermore, the 
instrument has been designed [20] so that 

g)[Rw(t)- Rwo] [(SATw'~ 5 
+I~ / , - \ , a ,w/  • 4 (28) 

a figure confirmed by experiment [20]. Thus, if we assign a value 
&~/~ = 1 x 10 -4  to the temperature coefficient of resistance of platinum and 
recall that 6Ts/ATw--1 x 10 4 because of the choice of operating con- 
ditions, then the only remaining errors arise from the uncertainties in the 
absolute value of Rw0. For the liquid-phase instrument considered here 
6Rwo = 7 x 10 -3  ~c2, while Rwo-  250 s and R w ( t ) -  Rw(0) ~ 1.80. We 
evaluate Eq. (27) retaining the order of terms and inserting appropriate 
values of Xo, a, and C. The final estimate for the uncertainty in Xo for the 
absolute measurements is 

8K0 = 0.04 + 9.5(1 x 10-4 ..~ 5 X 10 - 4  + 1 x 10 -4  
No 

+ 2 x 1 0  4+3 x 1 0 - 5 + 4 x  10-3) (29) 

or  

~KO = 8.7 x 10 -2 (30) 
KO 

That is, the error with which we should be able to obtain the thermal 
diffusivity is about 9%. 

For the general-purpose instrument (gas and liquid phase) a = 6.57 ~m 
determined with an error of 8a/a = 0.005, four times smaller than for a 
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3.5 #m wire. Other differences from the liquid-phase instrument are an 
accuracy of 1 x 10 -3 for the increase in the wire resistance [Eq. (28)]; 
a wire resistance calibration error, 6~/~, of 2 x 10 4; a determination of 
the zero-time resistance error, 6Rwo/Rwo, of 1.2 x 10 4; and an error for 
the term g)Rwo/[Rw(t) - Rw0] of 4.3 x 10 -3. 

A calculation similar to Eq. (29), valid for a moderately dense gas, 
gives 

c]K o 

/s 
_ _ = 0 . 0 1 + 9 . 4 ( l x 1 0 _ 4 + 1 •  3 + 2 •  0 4 

+ 1 . 2 x 1 0 - 4 + 4 . 3 •  3) (31) 

o r  

6K---2~ 6.5 x 10 2 (32) 
KO 

Therefore, the error with which we should be able to obtain the 
thermal diffusivity in the gaseous phase with this instrument is about 7%. 

Because the liquid- and gas-phase instruments chosen as examples 
yield thermal conductivity data with an uncertainty of _+0.3 and 1%, 
respectively, it is worthwhile emphasizing the source of the very much 
larger estimated uncertainty in the thermal diffusivity. First, it is clear that 
unlike the case of the thermal conductivity, the radius of the wire enters 
into the evaluation of the diffusivity. The wire radius is difficult to evaluate 
with a high precision and may indeed vary along the wire length, when it is 
small. Second, we note that the factor ln(4~c/a2C) that multiplies the 
remaining errors is large and amplifies individual errors. This is inevitable 
if the underlying conditions of the theory are to be met. Of the remaining 
errors, the dominant contribution arises from the uncertainty 
6Rwo/[Rw(t)--Rw0]. While it is possible to reduce the uncertainty in the 
measurement of absolute resistance, it is difficult to do so with a bridge 
also capable of performing the transient measurements, which is essential 
to avoid systematic errors. Thus, this single source of error contributes 
+ 4 %  to the uncertainty in the thermal diffusivity. The remaining con- 
tributions to the error in ~c o are small but equally difficult to reduce. 

3.3. Relative Measurements 

Some improvement in the accuracy of thermal diffusivity 
measurements can be achieved by performing relative measurements. Thus, 
we see from the working equation [Eq. (23)] that for two fluids (or for two 



308 Nieto de Castro, Taxis, Roder, and Wakeham 

states of the same fluid) denoted by the subscripts 1 and 2, the ratio of the 
two thermal diffusivities is 

r/ o] 1 Iprid(,')l 
[ - -~o]2-exP(k  -S I , - L  s I=3 (33) 

If the thermal diffusivity of one fluid is known accurately under one set 
of conditions, then the same property may be determined for other fluids as 
a ratio. The advantages of this arrangement are that some of the errors set 
out in Eq. (27) are eliminated and only the random errors in the deter- 
mination of A Tid and S remain. Thus, it is possible to determine thermal 
diffusivities with a precision of approximately + 4 % .  The accuracy of the 
measurements is inevitably worse owing to the error in the reference value 
of the thermal diffusivity. 

Because 

2 
x = (34) pCp 

the isobaric heat capacity can be obtained from measurements of thermal 
conductivity and thermal diffusivity with an error comparable to that of 
the diffusivity itself. While an error in Cp of the order of 5 % is not the best 
that can be achieved in favorable circumstances, the current application of 
the transient hot-wire method permits this modest accuracy to be main- 
tained over a wide range of conditions, including those where other 
methods have not been applied. 

4. EXPERIMENTAL APPLICATION 

In order to confirm the analysis presented here, we have carried out 
measurements with both the liquid [3] and the general-purpose 
instruments [ 11 ] described earlier. 

For  the liquid phase we have employed the instrument described in 
Ref. 3, unchanged except for the replacement of the sensing wires and the 
use of the new bridge measurement described elsewhere 1-201. We have 
used as our reference datum the thermal diffusivity of toluene at a pressure 
of 0.1 MPa and a temperature of 328.5 K. To construct the reference value 
we have used the thermal conductivity given by Nieto de Castro et al. 
[211, the density reported by Kashiwagi et al. [22], and the heat capacity 
tabulated by Vargaftik [231. The final value is 

/s = '  x(P = 0.1 MPa, T =  328.5 K) = 8.01 x 10-8 m 2 "s-  1 
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We have carried out transient hot-wire measurements of ~: for toluene and 
m-xylene over the temperature range 308 to 360 K and for pressures up to 
380 MPa. In particular, for m-xylene we have carried out a series of 
measurements under nominally identical conditions ( T =  307.7 K, 
P = 9 5  MPa)  to determine the reproducibility of the measurements for 
comparison with our estimate of their precision. Table I contains the results 
of this series of measurements; the ratio [hS//s is given, together with an 
absolute value of K. The standard deviation over the set of seven 
measurements is +2.7%, whereas the maximum deviation from the mean 
is +4.9 %. These figures are entirely consistent with the estimate of the 
precision of the thermal diffusivity measurements for this instrument given 
earlier. 

A similar test has been carried out for the general purpose instrument, 
using argon as a test material. The instrument is described in Ref. 11, 
unchanged except for the inclusion of an R-C filter and an operational 
amplifier across the arms of the bridge, described elsewhere [24]. We have 
employed as our reference datum the thermal diffusivity of argon at a 
pressure of 3.548 MPa and a temperature of 200.63 K, obtained from the 
measured thermal conductivity given by Roder and Nieto de Castro [25],  
the density and the heat capacity being taken from the equation of state 
developed by Stewart et al. [26]. The final value is 

~Crer=K(P=3.548 MPa, T=200.63 K)=2 .3 3  x 1 0 -7 m 2 . s  1 

The repeated series of measurements of the diffusivity of argon have been 
carried out at a pressure of 3.548 MPa and a temperature of 200.63 K, and 
the results are contained in Table II. The standard deviation of the set of K 
values from the mean is _+3.3%, while the maximum deviation is one of 

Table I. The Reproduc ib i l i ty  of Thermal  Diffusivity Measu remen t s  

m-xylene:  Po = 95 M P a ;  To = 305.5 K; xr~f = 80.1 x 10 -9 m 2 - s 1 

Run No. /s163 K (10 9 m 2 , s - l )  

1 1.110 88.9 

2 1.088 87.2 
3 1.147 91.9 

4 1.055 84.5 

5 1.080 86.5 

6 1.081 86.6 
7 1.095 87.7 

__+ a~ 1.094 + 0.029 87.6 __+ 2.3 
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Table II. The Reproducibility of Thermal Diffusivity Measurements 

Argon: Po = 3.548 MPa; T O = 200.63 K; xr~ f = 233 • 10-9 m 2 "s 1 

Run No. K/xref x (10 -9 m 2. S - 1  ) 

7145 0.910 212 

7146 0.957 223 

7147 0.936 218 

7148 0.983 229 

• a~ 0.947 • 221 • 7 

4.1%. These figures are, once again, commensurate with our estimated 
precision for this instrument. 

To complete the present investigation we have performed thermal dif- 
fusivity measurements on toluene over the temperature range 308 to 345 K 
at pressures up to 70 MPa and on argon over the temperature range 172 to 
325 K at pressures up to 70 MPa. The results for a sample isotherm of 
toluene in the form of ratios to the appropriate reference values and the 
absolute values are contained in Table III. In the case of argon we 
calculated the thermal diffusivity in both the absolute and the relative 
method. Table IV presents only the absolute data obtained. N o  significant 
differences were found in the values of the thermal diffusivity obtained from 
the two methods. We expected the use of a relative measurement to 
improve the accuracy of the data. Since this did not occur, we interpret the 
result to mean (a) that any existing error in the measurement of the wire 
radius is very small and (b) that the errors shown in Table IV are random 

Table III. The Thermal Diffusivity and Heat Capacity of Toluene 

To = 345.0 K; ~r~f = 80.1 x 10 -9 m 2. s -1 

Run P • Cp 
No. (MPa) KlIs f ( 1 0 - 9 m  z-s -1  ) ( J . k g  l - K - l )  

1 0.1 0.968 77.6 1850 
2 4.1 0.955 76.5 1890 

3 12.0 0.941 75.4 1960 

4 22.9 0.987 79.0 1910 
5 37.1 1.042 83.5 1850 
6 51.2 0.982 78.7 2010 

7 67.5 1.023 81.9 1970 
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Fig. 4. The isobaric heat capacity of toluene as a 
function of pressure at a temperature of 345 K. ( ~ )  
Present experiment; ( ) the value at 
P =  0.1 MPa taken f~om Vargaftik [23]. 
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Fig. 5. The isobaric heat capacity of argon as a function of density 
at a temperature of 200.63 K. ( ~ )  Averaged experimental points, 
with error bars; ( ) calculated from the equation of state [26J. 
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and should be attributed to a random error in Rw0. For both fluids the 
data have been used to derive the isobaric heat capacity of the fluid with 
the aid of the available density data for toluene [22] and argon [26] and 
the simultaneously measured values of the thermal conductivity. From 
Tables III and IV it is estimated that the error in the diffusivity and heat 
capacity data is _+6% for toluene and +4% for argon. 

Figure 4 contains a plot of the measured heat capacity of toluene as a 
function of pressure along an isotherm. The same figure includes the value 
from Vargaftik [23] at atmospheric pressure. It is just possible to discern 
an increase in the heat capacity with pressure within the uncertainty 
shown. 

Figure 5 displays the heat capacity values given in Table IV in 
graphical form. Each experimental point shown is an average of four points 
measured with different powers. The reproducibility for a particular 
pressure level has already been shown in Table II. The error bars corres- 
pond to the variation with power. The line represents the values of the heat 
capacities calculated from the equation of state [26], with a possible uncer- 
tainty of 3 % at low and high densities and 5 % around the critical density. 
The root mean square deviation between experimental heat capacities and 
values derived from the equation of state is 4%, as shown in Table IV. The 
comparison shows that the variation of Cp with density can be obtained 
completely with the transient hot-wire technique and that the experimental 
results obtained agree with those obtained from the equation of state, 
within their mutual uncertainties. We note, however, that the agreement of 
+_4% is slightly better than the estimated uncertainty of 7% in Section 3.3. 

The extrapolation of the heat capacity values, measured in the 
absolute way, to zero density yields a C ~ of 20.21 +_ 0.96 J-mol 1. K-1, an 
accuracy of 4.8%, confirming the accuracy already presented for other 
isotherms in Ref. 24. 

5. CONCLUSIONS 

A thorough analysis of the transient hot-wire instrument for the 
measurement of thermal diffusivity has been given. It has been shown that 
under favorable conditions an error of 7 to 9% in absolute measurements 
is almost inevitable, especially when very small wire diameters are used, 
notwithstanding earlier claims for greatly superior accuracy. If the wire 
diameter is known very accurately or if relative measurements are made, 
then the accuracy can be of the order of a few percent and this has been 
confirmed by direct measurements on two instruments. 

Although the transient hot-wire technique at present cannot produce 
heat capacity values with accuracies achieved by the best available direct 
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experimental  techniques, it can be used very easily to advantage  in regions 

of the phase diagram where direct measurements  are difficult. Moreover,  

the accuracy presently achieved with this technique to obta in  the heat 

capacity of fluids is satisfactory for m a n y  chemical engineering 
applications,  when no  other sources of experimental  data  are available. 
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